
The Julia Express

Bogumił Kamiński

January 4, 2015

Contents

1 Introduction 2

2 Getting around 2

3 Basic literals and types 3

4 Complex literals and types 4

4.1 Tuples . 4

4.2 Arrays . 4

4.3 Composite types . 5

4.4 Dictionaries . 6

5 Strings 6

6 Programming constructs 6

7 Variable scoping 8

8 Modules 9

9 Operators 10

10 Essential general usage functions 10

11 Reading and writing data 11

12 Random numbers 11

13 Data frames 11

14 Plotting 12

15 Macros 12

16 Taking it all together example 13

16.1 Simple bootstraping exercise . 13

16.2 Interactive work . 13

1

The Julia Express 2

1 Introduction

The Purpose of this document is to introduce programmers to Julia programming by example. This is a simplified
exposition of the language.1

It is best to execute these examples by copying them to a file and next running them using include function.

If some packages are missing on your system use Pkg.add to require installing them. There are many add-on packages
which you can browse at http://pkg.julialang.org/.

Major stuff not covered (please see the documentation):

1) parametric types;
2) parallel and distributed processing;
3) advanced I/O operations;
4) package management; see Pkg;
5) interaction with system shell; see run;
6) exception handling; see try;
7) creation of coroutines; see Task;
8) two-way integration with C and Fortran.

You can find current Julia documentation at http://julia.readthedocs.org/en/latest/manual/.

Julia Express was tested using the following 64-bit Julia version:

versioninfo()

Julia Version 0.3.3

Commit b24213b* (2014-11-23 20:19 UTC)

Platform Info:

System: Windows (x86_64-w64-mingw32)

CPU: Intel(R) Core(TM) i7-3740QM CPU @ 2.70GHz

WORD_SIZE: 64

BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Sandybridge)

LAPACK: libopenblas

LIBM: libopenlibm

LLVM: libLLVM-3.3

Remember that you can expect every major version of Julia to introduce breaking changes.

Check https://github.com/JuliaLang/julia/blob/master/NEWS.md for release notes.

All sugestions how this guide can be improved are welcomed. Please contact me at bkamins@sgh.waw.pl.

2 Getting around

Running julia invokes interactive (REPL) mode. In this mode some useful commands are:

1) ^D (exits julia);
2) ^C (interrupts computations);
3) ? (enters help mode)
4) putting ; after the expression will disable showing of its value.

Examples of some essential functions in REPL (they can be also invoked in scripts):

help(help) # get help on function help

apropos("help") # search documentation for help

@less(max(1,2)) # show the definition of max function when invoked with arguments 1 and 2

whos() # list of global variables and their types

cd("D:/") # change working directory to D:/ (on Windows)

pwd() # get current working directory

include("file.jl") # execute source file

require("file.jl") # execute source file if it was not executed before

exit(1) # exit with code 1 (exit code 0 by default)

clipboard([1:10]) # copy data to system clipboard

workspace() # clear worskspace - create new Main module (only to be used interactively)

You can execute Julia script by running julia script.jl.

Try saving the following example script to a file and run it (more examples of all the constructs used are given in
following sections):

1The rocket ship clip is free for download at http://www.clipartlord.com/free-cartoon-rocketship-clip-art-2/.

http://pkg.julialang.org/
http://julia.readthedocs.org/en/latest/manual/
https://github.com/JuliaLang/julia/blob/master/NEWS.md
mailto:bkamins@sgh.waw.pl
http://www.clipartlord.com/free-cartoon-rocketship-clip-art-2/

The Julia Express 3

Sieve of Eratosthenes, docstrings coming in Julia 0.4

function es(n::Int64) # accepts one 64 bit integer argument

isprime = ones(Bool, n) # n-element vector of true-s

isprime[1] = false # 1 is not a prime

for i in 2:int64(sqrt(n)) # loop integers from 2 to sqrt(n), explicit conversion to integer

if isprime[i] # conditional evaluation

for j in (i*i):i:n # sequence from i^2 to n with step i

isprime[j] = false # j is divisible by i

end

end

end

return filter(x -> isprime[x], 1:n) # filter using anonymous function

end

println(es(100)) # print all primes less or equal than 100

@time es(10^7) # check function execution time and memory usage

3 Basic literals and types

Basic scalar literals (x::Type is a literal x with type Type assertion):

1::Int64 # 64-bit integer, no overflow warnings, fails on 32 bit Julia, use Int32 assertion instead

1.0::Float64 # 64-bit float, defines NaN, -Inf, Inf

true::Bool # boolean, allows "true" and "false"

’c’::Char # character, allows Unicode

"s"::String # strings, allows Unicode, see also Strings

All basic types are immutable. Specifying type assertion is optional (and usually it is not needed, but I give it to show
how you can do it). Type assertions are made in the same way and may improve code performance.

If you do not specify type assertion Julia will choose a default. Note that defaults might be different on 32-bit and
64-bit versions of Julia. A most important difference is for integers which are Int32 and Int64 respectively. This means
that 1::Int32 assertion will fail on 64-bit machine.

There is no automatic type conversion (especially important in function calls). Has to be explicit:

int64(1.3) # rounds float to integer

int64(’a’) # character to integer

int64("a") # error no conversion possible

int64(2.0^300) # error - loss of precision

float64(1) # integer to float

bool(-1) # converts to boolean true

bool(0) # converts to boolean false

char(89.7) # cast float to integer to char

string(true) # cast bool to string (works with other types)

General conversion can be done using convert(Type, x):

convert(Int64, 1.0) # convert float to integer

Automatic promotion of many arguments to common (if any) type using promote:

promote(true, ’c’, 1.0) # tuple (see Tuples) of floats, true promoted to 1.0

Many operations (arithmetic, assignment) are defined in a way that performs automatic type promotion.

One can verify type of argument:

typeof("abc") # ASCIIString returned which is a String subtype

isa(1, Float64) # false, integer is not float

isa(1.0, Float64) # true

It is possible to perform calculations using arbitrary precision arithmetic or rational numbers:

BigInt(10)^1000 # big integer

BigFloat(10)^1000 # big float, see documentation how to change default precision

123//456 # rational numbers using // operator

The Julia Express 4

4 Complex literals and types

Type beasts:

Any # all objects are of this type

None # subtype of all types, no object can have this type

Nothing # type indicating nothing, subtype of Any

nothing # only instance of Nothing

Additionally #undef indicates an incompletely initialized instance (see documentation for details).

Warning! None, Nothing and nothing are subject to change names in Julia 0.4.

4.1 Tuples

Tuples are immutable sequences indexed from 1:

() # empty tuple

(1,) # one element tuple

("a", 1) # two element tuple

(’a’, false)::(Char, Bool) # tuple type assertion

x = (1, 2, 3)

x[1] # 1 (element)

x[1:2] # (1, 2) (tuple)

x[4] # bounds error

x[1] = 1 # error - tuple is not mutable

a, b = x # tuple unpacking a=1, b=2

4.2 Arrays

Arrays are mutable and passed by reference. Array creation:

Array(Char, 2, 3, 4) # 2x3x4 array of Chars

Array(Int64, 0, 0) # degenerate 0x0 array of Int64

cell(2, 3) # 2x3 array of Any

zeros(5) # vector of Float64 zeros

ones(Int64, 2, 1) # 2x1 array of Int64 ones

trues(3), falses(3) # tuple of vector of trues and of falses

eye(3) # 3x3 Float64 identity matrix

linspace(1, 2, 5) # 5 element equally spaced vector

1:10 # iterable from 1 to 10

1:2:10 # iterable from 1 to 9 with 2 skip

reshape(1:12, 3, 4) # 3x4 array filled with 1:12 values

fill("a", 2, 2) # 2x2 array filled with "a"

repmat(eye(2), 3, 2) # 2x2 identity matrix repeated 3x2 times

x = [1, 2] # two element vector

resize!(x, 5) # resize x in place to hold 5 values (filled with garbage)

[1:10] # convert iterator to a vector, also collect(1:10)

[1] # vector with one element (not a scalar)

[x * y for x in 1:2, y in 1:3] # comprehension generating 2x3 array

Float64[x^2 for x in 1:4] # casting comprehension result to Float64

{i/2 for i = 1:3} # comprehension generating array of type Any

[1 2] # 1x2 matrix (hcat function)

[1 2]’ # 2x1 matrix (after transposing)

[1, 2] # vector (vcat function)

[1; 2] # vector (hvcat function)

[1 2 3; 1 2 3] # 2x3 matrix (hvcat function)

[1; 2] == [1 2]’ # false, different array dimensions

[(1, 2)] # 1-element vector

collect((1, 2)) # 2-element vector by tuple unpacking

[[1 2] 3] # append to a row vector (hcat)

[[1, 2], 3] # append to a column vector (vcat)

The Julia Express 5

Vectors (1D arrays) are treated as column vectors.

Julia offers sparse and distributed matrices (see documentation for details).

Commonly needed array utility functions:

a = [x * y for x in 1:2, y in 1, z in 1:3] # 2x1x3 array of Int64

ndims(a) # number of dimensions in a

eltype(a) # type of elements in a

length(a) # number of elements in a

size(a) # tuple containing dimension sizes of a

vec(a) # cast array to vetor (single dimension)

squeeze(a, 2) # remove 2nd dimension as it has size 1

sum(a, 3) # calculate sums for 3rd dimensions, similarly: mean, std,

prod, minimum, maximum, any, all

count(x -> x > 0, a) # count number of times a predicate is true, similar: all, any

Array access:

a = linspace(0, 1) # Float64 vector of length 100

a[1] # get scalar 0.0

a[end] # get scalar 1.0 (last position)

a[1:2:end] # every second element from range

a[repmat([true, false], 50)] # select every second element

a[[1, 3, 6]] # 1st, 3rd and 6th element of a

sub(a, 1:2:100) # select virtual submatrix (the same memory)

Notice the treatment of trailing singleton dimensions:

a = reshape(1:12, 3, 4)

a[:, 1:2] # 3x2 matrix

a[:, 1] # 3-element vector

a[1, :] # 1x4 matrix

Array assignment:

x = reshape(1:8, 2, 4)

x[:,2:3] = [1 2] # error; size mismatch

x[:,2:3] = repmat([1 2], 2) # OK

x[:,2:3] = 3 # OK

Arrays are assigned and passed by reference. Therefore copying is provided:

x = cell(2)

x[1] = ones(2)

x[2] = trues(3)

a = x

b = copy(x) # shallow copy

c = deepcopy(x) # deep copy

x[1] = "Bang"

x[2][1] = false

a # identical as x

b # only x[2][1] changed from original x

c # contents to original x

Array types syntax examples:

cell(2)::Array{Any, 1} # vector of Any

[1 2]::Array{Int64, 2} # 2 dimensional array of Int64

[true; false]::Vector{Bool} # vector of Bool

[1 2; 3 4]::Matrix{Int64} # matrix of Int64

4.3 Composite types

Composite types are mutable and passed by reference.

You can define and access composite types:

The Julia Express 6

type Point

x::Int64

y::Float64

meta

end

p = Point(0, 0.0, "Origin")

p.x # access field

p.meta = 2 # change field value

p.x = 1.5 # error, wrong data type

p.z = 1 # error - no such field

names(p) # get names of instance fields

names(Point) # get names of type fields

You can define type to be immutable by replacing type by immutable. There are also union types (see documentation
for details).

4.4 Dictionaries

Associative collections (key-value dictionaries):

x = Dict{Float64, Int64}() # empty dictionary mapping floats to integers

x = (Int64=>Int64)[1=>1, 2=>2] # literal syntax creation, optional type information

y = {"a"=>1, (2,3)=>true} # dictionary with type Dict(Any, Any)

y["a"] # element retrieval

y["b"] # error

y["b"] = ’b’ # added element

haskey(y, "b") # check if y contains key "b"

keys(y), values(y) # tuple of iterators returing keys and values in y

delete!(y, "b") # delete key from a collection, see also: pop!

get(y,"c","default") # return y["c"] or "default" if not haskey(y,"c")

Julia also supports operations on sets and dequeues, priority queues and heaps (please refer to documentation).

Warning! Dictionaries are subject to change names in Julia 0.4.

5 Strings

String operations:

"Hi " * "there!" # string concatenation

"Ho " ^ 3 # repeat string

string("a= ", 123.3) # create using print function

repr(123.3) # fetch value of show function to a string

contains("ABCD", "CD") # check if first string contains second

"\"\n\t\$" # C-like escaping in strings, new \$ escape

x = 123

"$x + 3 = $(x+3)" # unescaped $ is used for interpolation

"\$199" # to get a $ symbol you must escape it

PCRE regular expressions handling:

r = r"A|B" # create new regexp

ismatch(r, "CD") # false, no match found

m = match(r, "ACBD") # find first regexp match, see documentation for details

There is a vast number of string functions — please refer to documentation.

Warning! String is to be renamed to AbstractString in Julia 0.4.

6 Programming constructs

The simplest way to create new variable is by assignment:

The Julia Express 7

x = 1.0 # x is Float64

x = 1 # now x is Int32 on 32 bit machine and Int64 on 64 bit machine

y::Float64 = 1.0 # y must be Float64, not possible in global scope

performs assertion on y type when it exists

Expressions can be compound using ; or begin end block:

x = (a = 1; 2 * a) # after: x = 2; a = 1

y = begin

b = 3

3 * b

end # after: y = 9; b = 3

There are standard programming constructs:

if false # if clause requires Bool test

z = 1

elseif 1==2

z = 2

else

a = 3

end # after this a = 3 and z is undefined

1==2 ? "A" : "B" # standard ternary operator

i = 1

while true

i += 1

if i > 10

break

end

end

for x in 1:10 # x in collection

if 3 < x < 6

continue # skip one iteration

end

println(x)

end # x is introduced in loop outer scope

You can define your own functions:

f(x, y = 10) = x + y # new function f with y defaulting to 10

last result returned

f(3, 2) # simple call, 5 returned

f(3) # 13 returned

function g(x::Int, y::Int) # type restriction

return y, x # explicit return of a tuple

end

apply(g, 3, 4) # call with apply

apply(g, 3, 4.0) # error - wrong argument

g(x::Int, y::Bool) = x * y # add multiple dispatch

g(2, true) # second definition is invoked

methods(g) # list all methods defined for g

(x -> x^2)(3) # anonymous function with a call

() -> 0 # anonymous function with no arguments

h(x...) = sum(x)/length(x) - mean(x) # vararg function; x is a tuple

h(1, 2, 3) # result is 0

x = (2, 3) # tuple

f(x) # error

f(x...) # OK - tuple unpacking

s(x; a = 1, b = 1) = x * a / b # function with keyword arguments a and b

s(3, b = 2) # call with keyword argument

t(; x::Int64 = 2) = x # single keyword argument

The Julia Express 8

t() # 2 returned

t(; x::Bool = true) = x # no multiple dispatch for keyword arguments; function overwritten

t() # true; old function was overwritten

q(f::Function, x) = 2 * f(x) # simple function wrapper

q(x -> 2 * x, 10) # 40 returned

q(10) do x # creation of anonymous function by do construct, useful in IO

2 * x

end

m = reshape(1:12, 3, 4)

map(x -> x ^ 2, m) # 3x4 array returned with transformed data

filter(x -> bits(x)[end] == ’0’, 1:12) # a fancy way to choose even integers from the range

As a convention functions with name ending with ! change their arguments in-place. See for example resize! in this
document.

Default function argument beasts:

y = 10

f1(x=y) = x; f1() # 10

f2(x=y,y=1) = x; f2() # 10

f3(y=1,x=y) = x; f3() # 1

f4(;x=y) = x; f4() # 10

f5(;x=y,y=1) = x; f5() # error - y not defined yet :(

f6(;y=1,x=y) = x; f6() # 1

7 Variable scoping

The following constructs introduce new variable scope: function, while, for, try/catch, let, type.

You can define variables as:

• global: use variable from global scope;

• local: define new variable in current scope;

• const: ensure variable type is constant (global only).

Special cases:

t # error, variable does not exist

f() = global t = 1

f() # after the call t is defined globally

function f1(n)

x = 0

for i = 1:n

x = i

end

x

end

f1(10) # 10; inside loop we use outer local variable

function f2(n)

x = 0

for i = 1:n

local x

x = i

end

x

end

f2(10) # 0; inside loop we use new local variable

function f3(n)

for i = 1:n

The Julia Express 9

local x # this local can be omitted; for introduces new scope

x = i

end

x

end

f3(10) # error; x not defined in outer scope

const x = 2

x = 3 # warning, value changed

x = 3.0 # error, wrong type

function fun() # no warning

const x = 2

x = true

end

fun() # true, no warning

Global constants speed up execution.

The let rebinds the variable:

Fs = cell(2)

i = 1

while i <= 2

j = i

Fs[i] = () -> j

i += 1

end

Fs[1](), Fs[2]() # (2, 2); the same binding for j

Fs = cell(2)

i = 1

while i <= 2

let j = i

Fs[i] = () -> j

end

i += 1

end

Fs[1](), Fs[2]() # (1, 2); new binding for j

Fs = cell(2)

i = 1

for i in 1:2

j = i

Fs[i] = () -> j

end

Fs[1](), Fs[2]() # (1, 2); for loops and comprehensions rebind variables

end

8 Modules

Modules encapsulate code. Can be reloaded, which is useful to redefine functions and types, as top level functions
and types are defined as constants.

module M # module name

export x # what module exposes for the world

x = 1

y = 2 # hidden variable

end

whos(M) # list exported variables

x # not found in global scope

The Julia Express 10

M.y # direct variable access possible

import all exported variables

load standard packages this way

using M

#import variable y to global scope (even if not exported)

import M.y

end

9 Operators

Julia follows standard operators with the following quirks:

true || false # binary or operator (singeltons only), || and && use short-circut evaluation

[1 2] & [2 1] # bitwise and operator

1 < 2 < 3 # chaining conditions is OK (singeltons only)

[1 2] .< [2 1] # for vectorized operators need to add ’.’ in front

x = [1 2 3]

2x + 2(x+1) # multiplication can be omitted between a literal and a variable or a left parenthesis

y = [1, 2, 3]

x + y # error

x .+ y # 3x3 matrix, dimension broadcasting

x + y’ # 1x3 matrix

x * y # array multiplication, 1-element vector (not scalar)

x .* y # elementwise multiplication

x == [1 2 3] # true, object looks the same

x === [1 2 3] # false, objects not identical

z = reshape(1:9, 3, 3)

z + x # error

z .+ x # x broadcasted vertically

z .+ y # y broadcasted horizontally

explicit broadcast of singelton dimensions

function + is called for each array element

broadcast(+, [1 2], [1; 2])

Many typical matrix transformation functions are available (see documentation).

10 Essential general usage functions

show([1:100]) # show text representation of an object

eps() # distance from 1.0 to next representable Float64

nextfloat(2.0) # next float representable, similarly provided prevfloat

isequal(NaN, NaN) # true

NaN == NaN # false

isequal(1, 1.0) # false

1 == 1.0 # true

isfinite(Inf) # false, similarly provided: isinf, isnan

fld(-5, 3), mod(-5, 3) # (-2, 1), division towards minus infinity

div(-5, 3), rem(-5, 3) # (-1, -2), division towards zero

find(x -> mod(x, 2) == 0, 1:8) # find indices for which function returns true

identity([1 2 3]) # identity returned

info("Info") # print information, similarly warn and error (raises error)

ntuple(3, x->2x) # create tuple by calling x->2x with values 1, 2 and 3

isdefined(:x) # if variable x is defined (:x is a symbol)

fieldtype(1:2,:len) # get type of the field in composite type (passed as symbol)

The Julia Express 11

1:5 |> exp |> sum # function application chaining

zip(1:5, 1:3) |> collect # convert iterables to iterable tuple and pass it to collect

enumerate("abc") # create iterator of tuples (index, collection element)

isempty("abc") # check if collection is empty

’b’ in "abc" # check if element is in a collection

indexin(collect("abc"), collect("abrakadabra")) # [11, 9, 0] (’c’ not found), needs arrays

findin("abc", "abrakadabra") # [1, 2] (’c’ was not found)

unique("abrakadabra") # return unique elements

issubset("abc", "abcd") # check if every element in fist collection is in the second

indmax("abrakadabra") # index of maximal element (3 - ’r’ in this case)

findmax("abrakadabra") # tuple: maximal element and its index

filter(x->mod(x,2)==0, 1:10) # retain elements of collection that meet predicate

dump(1:2:5) # show all user-visible structure of an object

sort(rand(10)) # sort 10 uniform random variables

11 Reading and writing data

For I/O details refer documentation. Basic operations:

• readdlm, readcsv: read from file

• writedlm, writecsv: write to a file

Warning! Trailing spaces are not discarded if delim=’ ’ in file reading.

12 Random numbers

Basic random numbers:

srand(1) # set random number generator seed to 1

rand() # generate random number from U[0,1)

rand(3, 4) # generate 3x4 matrix of random numbers from U[0,1]

rand(2:5, 10) # generate vector of 10 random integer numbers in range form 2 to 5

randn(10) # generate vector of 10 random numbers from standard normal distribution

Advanced randomness form Distributions package:

using Distributions # load package

sample(1:10, 10) # single bootstrap sample from set 1-10

b = Beta(0.4, 0.8) # Beta distribution with parameters 0.4 and 0.8

see documentation for supported distributions

mean(b) # expected value of distribution b

see documentation for other supported statistics

rand(b, 100) # 100 independent random samples from distribution b

13 Data frames

Warning! DataFrames will be probably redesigned in the future.

Julia can handle R-like NA by introducing new scalar and extending Array to DataArray:

using DataFrames # load required package

x = NA # scalar NA value

y = DataArray([1:10]) # create DataArray that can contain NAs

y[1] = NA # assign NA to data array

sum(y) # NA, as it contains NA

sum(dropna(y)) # 54, as NA is removed

Julia can use R-like data frames:

df = DataFrame(A=1:4,B="a") # create data frame with two columns; scalars are expanded

df[:C] = [true, false] # error, new columns must have the same length

df[:C] = repmat([true, false], 2) # OK, new column added

The Julia Express 12

head(df) # data frame head, similar: tail

df[1:2, ["A", "C"]] # select 2 first rows and A and C columns

df[2] # select 2nd column

names(df) # data frame column names

describe(df) # summary of df contents; not really good

colwise(sum, df[[1,3]]) # calculate sum of column 1 and 3 - not really nice output

df2 = readtable("filename") # read data from disk; warning on handling spaces at eol

writetable("filename", df) # write to disk; see documentation for options for read and write

For more details on data frames see documentation.

14 Plotting

There are several plotting packages for Julia: Winston, Gadfly and PyPlot. Here we show how to use on PyPlot as it is
natural for Python users:

using PyPlot # load PyPlot, example taken from Matplotlib documentation

x = linspace(0, 1)

y = sin(4 * pi * x) .* exp(-5 * x)

fill(x, y) # you can access any matplotlib.pyplot function

grid(true)

using Distributions # second example

srand(1)

x = randn(1000)

hist conflicts with Julia hist so prepend plt.

n, bins, patches = plt.hist(x, 20, normed = 1, facecolor="y")

points = linspace(bins[1], bins[end])

plot(points, pdf(Normal(), points), "r") # add normal density plot

15 Macros

You can define macros (see documentation for details). Useful standard macros.

Assertions:

@assert 1 == 2 "ERROR" # 2 macro arguments; error raised

using Base.Test # load Base.Test module

@test 1 == 2 # similar to assert; error

@test_approx_eq 1 1.1 # error

@test_approx_eq_eps 1 1.1 0.2 # no error

Function vectorization:

t(x::Float64, y::Float64 = 1.0) = x * y

t(1.0, 2.0) # OK

t([1.0 2.0]) # error

@vectorize_1arg Float64 t # vectorize first argument

t([1.0 2.0]) # OK

t([1.0 2.0], 2.0) # error

@vectorize_2arg Float64 t # vectorize two arguments

t([1.0 2.0], 2.0) # OK

t(2.0, [1.0 2.0]) # OK

t([1.0 2.0], [1.0 2.0]) # OK

Benchmarking:

@time [x for x in 1:10^6].’ # print time and memory

@timed [x for x in 1:10^6].’ # return value, time and memory

@elapsed [x for x in 1:10^6] # return time

@allocated [x for x in 1:10^6] # return memory

tic() # start timer

The Julia Express 13

[x for x in 1:10^6].’

toc() # stop timer and print time

toq() # stop timer and return time

16 Taking it all together example

16.1 Simple bootstraping exercise

using Distributions

using PyPlot

using KernelDensity

srand(1)

generate 100 observations from correlated normal variates

n = 100

dist = MvNormal([0.0; 0.0], [1.0 0.5; 0.5 1.0])

r = rand(dist, n)’

create 100 000 bootstrap replications

and fetch time and memory used

@time bootcor = Float64[cor(r[sample(1:n, n),:])[1, 2] for i in 1:10^5]

calculate kernel density estimator

kdeboot = KernelDensity.kde(bootcor)

plot results

plt.hist(bootcor, 50, normed = 1)

plot(kdeboot.x, kdeboot.density, color = "y", linewidth = 3.0)

axvline(0.5, color = "r", linewidth = 3.0)

savefig("corboot.pdf", format = "pdf") # save results to pdf

This is what you should obtain:

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

16.2 Interactive work

Define a simple piece of code inside module to be able to change function definition without restarting Julia.

module MCint

f(x) = sin(x * x)

vectorize f as x * x does not work on vectors

@vectorize_1arg Float64 f

The Julia Express 14

srand(1)

lo = 0.0

hi = 1.0

n = 10^8

integrate f on [0, 1] via Monte Carlo simulation

tic()

int_mc = mean(f(rand(n) * (hi - lo) + lo))

toc()

and using adaptive Gauss-Kronrod method

int_gk = quadgk(f, lo, hi)

example of string interpolation

println("values: \t$int_mc\t$(int_gk[1])")

println("deviation:\t$(int_mc - int_gk[1])")

println("quadgk err:\t$(int_gk[2])")

end

We save it to test.jl and load it with include("test.jl").

Now we notice that we could remove line @vectorize_1arg Float64 f and change definition of integrated function to
f(x) = sin(x .* x). We can run include("test.jl"). You get a warning about module redefinition, but function was
redefined. Surprisingly — at least on my machine — this version of code is a bit slower.

	Introduction
	Getting around
	Basic literals and types
	Complex literals and types
	Tuples
	Arrays
	Composite types
	Dictionaries

	Strings
	Programming constructs
	Variable scoping
	Modules
	Operators
	Essential general usage functions
	Reading and writing data
	Random numbers
	Data frames
	Plotting
	Macros
	Taking it all together example
	Simple bootstraping exercise
	Interactive work

